31 research outputs found

    Role of axillary sentinel lymph node biopsy in patients with pure ductal carcinoma in situ of the breast

    Get PDF
    BACKGROUND: Sentinel lymph node (SLN) biopsy is an effective tool for axillary staging in patients with invasive breast cancer. This procedure has been recently proposed as part of the treatment for patients with ductal carcinoma in situ (DCIS), because cases of undetected invasive foci and nodal metastases occasionally occur. However, the indications for SLN biopsy in DCIS patients are controversial. The aim of the present study was therefore to assess the incidence of SLN metastases in a series of patients with a diagnosis of pure DCIS. METHODS: A retrospective evaluation was made of a series of 102 patients who underwent SLN biopsy, and had a final histologic diagnosis of pure DCIS. Patients with microinvasion were excluded from the analysis. The patients were operated on in five Institutions between 1999 and 2004. Subdermal or subareolar injection of 30–50 MBq of 99 m-Tc colloidal albumin was used for SLN identification. All sentinel nodes were evaluated with serial sectioning, haematoxylin and eosin staining, and immunohistochemical analysis for cytocheratin. RESULTS: Only one patient (0.98%) was SLN positive. The primary tumour was a small micropapillary intermediate-grade DCIS and the SLN harboured a micrometastasis. At pathologic revision of the specimen, no detectable focus of microinvasion was found. CONCLUSION: Our findings indicate that SLN metastases in pure DCIS are a very rare occurrence. SLN biopsy should not therefore be routinely performed in patients who undergo resection for DCIS. SLN mapping can be performed, as a second operation, in cases in which an invasive component is identified in the specimen. Only DCIS patients who require a mastectomy should have SLN biopsy performed at the time of breast operation, since in these cases subsequent node mapping is not feasible

    Flying ad-hoc network application scenarios and mobility models

    Get PDF
    [EN] Flying ad-hoc networks are becoming a promising solution for different application scenarios involving unmanned aerial vehicles, like urban surveillance or search and rescue missions. However, such networks present various and very specific communication issues. As a consequence, there are several research studies focused on analyzing their performance via simulation. Correctly modeling mobility is crucial in this context and although many mobility models are already available to reproduce the behavior of mobile nodes in an ad-hoc network, most of these models cannot be used to reliably simulate the motion of unmanned aerial vehicles. In this article, we list the existing mobility models and provide guidance to understand whether they could be actually adopted depending on the specific flying ad-hoc network application scenarios, while discussing their advantages and disadvantages.Bujari, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P.; Palazzi, CE.; Ronzani, D. (2017). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks. 13(10):1-17. doi:10.1177/1550147717738192S117131

    Canine and human gastrointestinal stromal tumors display similar mutations in c-KIT exon 11

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastrointestinal stromal tumors (GISTs) are common mesenchymal neoplasms in the gastrointestinal tract of humans and dogs. Little is known about the pathogenesis of these tumors. This study evaluated the role of <it>c-KIT </it>in canine GISTs; specifically, we investigated activating mutations in exons 8, 9, 11, 13, and 17 of <it>c-KIT </it>and exons 12, 14, and 18 of platelet-derived growth factor receptor, alpha polypeptide (<it>PDGFRA</it>), all of which have been implicated in human GISTs.</p> <p>Methods</p> <p>Seventeen canine GISTs all confirmed to be positive for KIT immunostaining were studied. Exons 8, 9, 11, 13 and 17 of <it>c-KIT </it>and exons 12, 14, and 18 of <it>PDGFRA</it>, were amplified from DNA isolated from formalin-fixed paraffin-embedded samples.</p> <p>Results</p> <p>Of these seventeen cases, six amplicons of exon 11 of <it>c-KIT </it>showed aberrant bands on gel electrophoresis. Sequencing of these amplicons revealed heterozygous in-frame deletions in six cases. The mutations include two different but overlapping six base pair deletions. Exons 8, 9, 13, and 17 of <it>c-KIT </it>and exons 12, 14, and 18 of <it>PDGFRA </it>had no abnormalities detected by electrophoresis and sequencing did not reveal any mutations, other than synonymous single nucleotide polymorphisms (SNPs) found in exon 11 of <it>c-KIT </it>and exons 12 and 14 of <it>PDGFRA</it>.</p> <p>Conclusions</p> <p>The deletion mutations detected in canine GISTs are similar to those previously found in the juxtamembrane domain of <it>c-KIT </it>in canine cutaneous mast cell tumors in our laboratory as well as to those reported in human GISTs. Interestingly, none of the other <it>c-KIT </it>or <it>PDGFRA </it>exons showed any abnormalities in our cases. This finding underlines the critical importance of <it>c-KIT </it>in the pathophysiology of canine GISTs. The expression of KIT and the identification of these activating mutations in <it>c-KIT </it>implicate KIT in the pathogenesis of these tumors. Our results indicate that mutations in <it>c-KIT </it>may be of prognostic significance and that targeting KIT may be a rational approach to treatment of these malignant tumors. This study further demonstrates that spontaneously occurring canine GISTs share molecular features with human GISTs and are an appropriate model for human GISTs.</p

    Canine cancer immunotherapy studies: linking mouse and human

    Full text link
    Despite recent major clinical breakthroughs in human cancer immunotherapy including the use of checkpoint inhibitors and engineered T cells, important challenges remain, including determining the sub-populations of patients who will respond and who will experience at times significant toxicities. Although advances in cancer immunotherapy depend on preclinical testing, the majority of in-vivo testing currently relies on genetically identical inbred mouse models which, while offering critical insights regarding efficacy and mechanism of action, also vastly underrepresent the heterogeneity and complex interplay of human immune cells and cancers. Additionally, laboratory mice uncommonly develop spontaneous tumors, are housed under specific-pathogen free conditions which markedly impacts immune development, and incompletely model key aspects of the tumor/immune microenvironment. The canine model represents a powerful tool in cancer immunotherapy research as an important link between murine models and human clinical studies. Dogs represent an attractive outbred combination of companion animals that experience spontaneous cancer development in the setting of an intact immune system. This allows for study of complex immune interactions during the course of treatment while also directly addressing long-term efficacy and toxicity of cancer immunotherapies. However, immune dissection requires access to robust and validated immune assays and reagents as well as appropriate numbers for statistical evaluation. Canine studies will need further optimization of these important mechanistic tools for this model to fulfill its promise as a model for immunotherapy. This review aims to discuss the canine model in the context of existing preclinical cancer immunotherapy models to evaluate both its advantages and limitations, as well as highlighting its growth as a powerful tool in the burgeoning field of both human and veterinary immunotherapy
    corecore